Fabrication of 20.19% Efficient Single-Crystalline Silicon Solar Cell with Inverted Pyramid Microstructure.

نویسندگان

  • Chunyang Zhang
  • Lingzhi Chen
  • Yingjie Zhu
  • Zisheng Guan
چکیده

This paper reports inverted pyramid microstructure-based single-crystalline silicon (sc-Si) solar cell with a conversion efficiency up to 20.19% in standard size of 156.75 × 156.75 mm2. The inverted pyramid microstructures were fabricated jointly by metal-assisted chemical etching process (MACE) with ultra-low concentration of silver ions and optimized alkaline anisotropic texturing process. And the inverted pyramid sizes were controlled by changing the parameters in both MACE and alkaline anisotropic texturing. Regarding passivation efficiency, the textured sc-Si with normal reflectivity of 9.2% and inverted pyramid size of 1 μm was used to fabricate solar cells. The best batch of solar cells showed a 0.19% higher of conversion efficiency and a 0.22 mA cm-2 improvement in short-circuit current density, and the excellent photoelectric property surpasses that of the same structure solar cell reported before. This technology shows great potential to be an alternative for large-scale production of high efficient sc-Si solar cells in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of the Silicon Inverted Nano- Pyramid and Study of Their Self- Cleaning Behavior

In this paper, synthesis of inverted nano-pyramids on a single crystal silicon surface through a simple and cost-effective wet chemical method is surveyed. These structures were synthesized by MACE process using Cu as the assisted metal in the solution of copper nitrate, hydrogen peroxide and hydrofluoric acid for different etching times. FE-SEM images of the samples show that time is an import...

متن کامل

15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures.

Only ten micrometer thick crystalline silicon solar cells deliver a short-circuit current of 34.5 mA cm(-2) and power conversion efficiency of 15.7%. The record performance for a crystalline silicon solar cell of such thinness is enabled by an advanced light-trapping design incorporating a 2D inverted pyramid photonic crystal and a rear dielectric/reflector stack.

متن کامل

Effect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics

Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are ...

متن کامل

Microstructure and open-circuit voltage of nÀiÀp microcrystalline silicon solar cells

A series of microcrystalline silicon n2i2p solar cells has been deposited by very high frequency plasma enhanced chemical vapor deposition at various values of silane to hydrogen source gas ratio and on two different substrate types. Relationships between microstructure and electrical characteristics of these solar cells are investigated by transmission electron microscopy, atomic force microsc...

متن کامل

Inkjet Printing of Isolation Layers for Back-Contacted Silicon-Heterojunction Solar Cells

For wafer based silicon solar cells, the combination of amorphous/crystalline silicon (a-Si:H/c-Si) heterojunction emitters (SHJ) [1] and back-contacted back-junction solar cell concepts (BCBJ) [2] offer a very high efficiency potential of around 24%. Stangl et al. proposed a relatively simple and therefore attractive cell concept comprising a two level metallization isolated by an insulation l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale research letters

دوره 13 1  شماره 

صفحات  -

تاریخ انتشار 2018